
Apache PIG

Pig follows the following format while
executing a script :

Read the data from the file system.

Perform a number of operations on the
data.

Store the final result back to file system.

Pig Code

lines = LOAD '/input/sample.txt';
hadoopLines = FILTER lines BY $0 MATCHES '*hadoop*';
STORE hadoopLines INTO '/output/cleanedLines';

Explanation

 Read the '/input/sample.txt' into a bag 'sample' that represents a
collection of tuples.

 Filter each tuple (represented as $0) with a regular expression,
looking for the character sequence hadoop.

 Store the hadoopLines bag, which contains all of those tuples from
'/input/sample.txt' that contain 'hadoop' into a new file called
'/output/cleanedLines'

Grep Example

Running Pig

Pig has two execution modes or exec types:

Local Mode – To run Pig in local mode, you need access to a
single machine; all files are installed and run using your local
host and file system. Specify local mode using -x flag

$ pig -x local

Mapreduce Mode – To run Pig in mapreduce mode, you need
access to a Hadoop cluster and HDFS installation. Mapreduce
mode is the default mode.

$ pig

Pig commands can be executed using the following modes
Interactive Mode
Batch Mode

Interactive Mode & Batch Mode Execution

To execute the pig statements in interactive mode, invoke
the Grunt shell by typing the “pig” command.

Enter the pig statements interactively at the grunt prompt.

Running Grep Example in interactive mode

Save the Pig latin statements in a file run it as below.
$ bin/pig <file-name>.pig

Pig Operators

 LOAD – Loads data from the file system or other storage into a
relation

 STORE – Saves a relation to the file system or other storage
 DUMP – Prints a relation to the console
 FILTER – Removes unwanted rows from a relation
 DISTINCT – Removes duplicate rows from a relation
 FOREACH...GENERATE – Adds or removes fields from a relation
 STREAM – Transforms a relation using an external program
 JOIN – Joins two or more relations
 COGROUP – Groups the data in two or more relations
 GROUP – Groups the data in a single relation
 CROSS – Creates the cross product of two or more relations
 ORDER – Sorts a relation by one or more fields
 LIMIT -- Limits the size of a relation to a maximum number of tuples
 UNION – Combines two or more relations into one
 SPLIT – Splits a relation into two or more relations.

 AVG – Calculates the average value of entries in a bag.
 CONCAT – Concatenates two byte arrays or two character arrays

together.
 COUNT – Calculates the number of entries in a bag.
 MAX – Calculates the maximum value of entries in a bag.
 MIN – Calculates the minimum value of entries in a bag.
 SUM – Calculates the sum of the values of entries in a bag.
 TOKENIZE – Tokenizes a character array into a bag of its constituent

words.
 PigStorage – Loads or stores relations using a field-delimited text

format. Each line is broken into fields using a configurable field
delimiter (defaults to a tab character) to be stored in the tuple’s fields. It
is the default storage when none is specified.

 BinStorage – Loads or stores relations from or to binary files. An internal
Pig format is used that uses Hadoop Writable objects.

 TextLoader – Loads relations from a plain-text format. Each line
corresponds to a tuple whose single field is the line of text.

built-in Functions

$ pig -x local
grunt> passwdLines = load '/etc/passwd' using PigStorage(':') As
(user:chararray,a:chararray,b:chararray,c:chararray,d:chararray,e:chararray,shell
:chararray);
grunt> dump passwdLines;
grunt> userShell = foreach passwdLines generate user,shell;
grunt> dump userShell;

Example using PigStorage & foreach

Example using GROUP BY, ORDER BY & AVGExample using PigStorage & foreachExample using GROUP BY, ORDER BY & AVG

Example to find the avg click for each URL.

$ pig
grunt> urls = LOAD '/input/urlcount.txt' AS (url:chararray, count:int);
grunt> urlCount = GROUP urls BY url;
grunt> urlAvg = foreach urlCount generate group, AVG(urls.count) as urlC;
grunt> d = ORDER urlAvg BY urlC DESC;
grunt> STORE d INTO '/output/urlAvg' using PigStorage('#');

GROUP BY groups all the same urls together.
group is a reserved word in the pig to identify each group.
ORDER BY orders the urls by their average in the descending order. If we
don't mention DESC, it will be ordered in the ascending order.

PARALLEL

– PARALLEL clause increases the parallelism of a job

– PARALLEL sets the number of reduce tasks for the

MapReduce jobs generated by Pig. The default value is 1.

– PARALLEL only affects the number of reduce tasks. Map

parallelism is determined by the input file, one map for each

Input Split.

– If you don’t specify PARALLEL, you still get the same map

parallelism but only one reduce task.

– Specify the PARALLEL clause with any operator that starts a

reduce phase, which includes COGROUP, CROSS,

DISTINCT, GROUP, JOIN (inner), JOIN (outer), and ORDER.

PARALLEL – An Example

Let us consider the avg click for each URL pig script, with PARALLEL
clause.

$ pig
grunt> urls = LOAD '/input/urlcount.txt' AS (url:chararray, count:int);
grunt> urlCount = GROUP urls BY url PARALLEL 3;
grunt> urlAvg = foreach urlCount generate group, AVG(urls.count) as
urlC;
grunt> d = ORDER urlAvg BY urlC DESC;
grunt> STORE d INTO '/output/urlAvg' using PigStorage('#');

For the above example 3 reducers will be spawned.

UDF

 UDFs are required to define custom processing.

 UDFs can be written in the Java, Python, JavaScript and

Ruby and permit Pig to support custom processing.

 Support for writing UDFs in Python, JavaScript and Ruby still

evolving.

 UDFs provide an oppertunity to extend Pig into your

application domain.

How to Write Java UDF

UDFs can be developed by extending EvalFunc class and overriding exec method.

Example : This UDF replaces a given string with another string.
package com.pig.udf;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;
import org.apache.pig.impl.util.UDFContext;

public class Transform extends EvalFunc<String> {
public String exec(Tuple input) throws IOException {

if (input == null || input.size() == 0) {
return null;

}
Configuration conf = UDFContext.getUDFContext().getJobConf();
String from = conf.get("replace.string");
if (from == null) {

throw new IOException("replace.string should not be null");
}
String to = conf.get("replace.by.string");
if (to == null) {

throw new IOException("replace.by.string should not be null");
}
try {

String str = (String) input.get(0);
return str.replace(from, to);

} catch (Exception e) {
throw new IOException("Caught exception processing input row", e);

}
}
}

